SOME APPLICATIONS OF THE FUNK-HECKE THEOREM

Neal Bez
Saitama University, Japan

ICM 2014 Satellite Conference in Harmonic Analysis
Chosun University, Gwangju, Korea

4 August 2014
Theorem (Funk–Hecke)

Let $d \geq 2$, $k \in \mathbb{N}_0$ and Y_k be a spherical harmonic of degree k. Then

$$\int_{S^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta)$$

for any $\theta \in S^{d-1}$ and any function $F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}})$.

Theorem (Funk–Hecke)

Let $d \geq 2$, $k \in \mathbb{N}_0$ and Y_k be a spherical harmonic of degree k. Then

$$\int_{S^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta)$$

for any $\theta \in S^{d-1}$ and any function $F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}})$. Here, the constant λ_k is given by

$$\lambda_k = |S^{d-2}| \int_{-1}^{1} F(t) P_{k,d}(t)(1 - t^2)^{\frac{d-3}{2}} \, dt$$

where $P_{k,d}$ is the Legendre polynomial of degree k in d dimensions.
Corollary

Let \(F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}}) \) and let \(\lambda_k \) be as above in the Funk–Hecke theorem.
Corollary

Let $F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}})$ and let λ_k be as above in the Funk–Hecke theorem. Suppose that G is a continuous function such that

$$\int_{S^{d-1}} F(\omega \cdot \theta) G(\theta) \, d\theta = 0$$

for each $\omega \in S^{d-1}$.

(1) $\lambda_k \neq 0$ for all $k \in \mathbb{N}_0 \Rightarrow G = 0$.

(2) $\lambda_k \neq 0$ for all odd $k \in \mathbb{N}_0 \Rightarrow G$ is even.

(3) $\lambda_k \neq 0$ for all even $k \in \mathbb{N}_0 \Rightarrow G$ is odd.
Corollary

Let $F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}})$ and let λ_k be as above in the Funk–Hecke theorem. Suppose that G is a continuous function such that

$$\int_{\mathbb{S}^{d-1}} F(\omega \cdot \theta) G(\theta) \, d\theta = 0$$

for each $\omega \in \mathbb{S}^{d-1}$.

(1) $\lambda_k \neq 0$ for all $k \in \mathbb{N}_0 \Rightarrow G = 0$.
Convex geometry (a brief detour)

Corollary

Let \(F \in L^1([-1, 1], (1 - t^2)^{d-3/2}) \) and let \(\lambda_k \) be as above in the Funk–Hecke theorem. Suppose that \(G \) is a continuous function such that

\[
\int_{S^{d-1}} F(\omega \cdot \theta) G(\theta) \, d\theta = 0
\]

for each \(\omega \in S^{d-1} \).

(1) \(\lambda_k \neq 0 \) for all \(k \in \mathbb{N}_0 \) \(\Rightarrow \) \(G = 0 \).

(2) \(\lambda_k \neq 0 \) for all odd \(k \in \mathbb{N}_0 \) \(\Rightarrow \) \(G \) is even.
Convex geometry (a brief detour)

Corollary

Let \(F \in L^1([-1, 1], (1 - t^2)^{\frac{d-3}{2}}) \) and let \(\lambda_k \) be as above in the Funk–Hecke theorem. Suppose that \(G \) is a continuous function such that

\[
\int_{S^{d-1}} F(\omega \cdot \theta) G(\theta) \, d\theta = 0
\]

for each \(\omega \in S^{d-1} \).

(1) \(\lambda_k \neq 0 \) for all \(k \in \mathbb{N}_0 \) \(\Rightarrow \) \(G = 0 \).

(2) \(\lambda_k \neq 0 \) for all odd \(k \in \mathbb{N}_0 \) \(\Rightarrow \) \(G \) is even.

(3) \(\lambda_k \neq 0 \) for all even \(k \in \mathbb{N}_0 \) \(\Rightarrow \) \(G \) is odd.
Trivially,

Funk–Hecke theorem

\[
\Rightarrow \int_{S^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta)
\]

\[
\Rightarrow \int_{(S^{d-1})^2} F(\omega \cdot \theta) Y_k(\omega) G(\theta) \, d\theta \, d\omega = \lambda_k \int_{S^{d-1}} Y_k(\theta) G(\theta) \, d\theta.
\]
Trivially,

Funk–Hecke theorem

\[\Rightarrow \int_{S^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta) \]

\[\Rightarrow \int_{(S^{d-1})^2} F(\omega \cdot \theta) Y_k(\omega) G(\theta) \, d\theta d\omega = \lambda_k \int_{S^{d-1}} Y_k(\theta) G(\theta) \, d\theta. \]

For \((F, G)\) as in the corollary, we obtain

\[\lambda_k \int_{S^{d-1}} Y_k(\theta) G(\theta) \, d\theta = 0. \]
Trivially,

Funk–Hecke theorem

\[\Rightarrow \int_{S^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta) \]

\[\Rightarrow \int_{(S^{d-1})^2} F(\omega \cdot \theta) Y_k(\omega) G(\theta) \, d\theta d\omega = \lambda_k \int_{S^{d-1}} Y_k(\theta) G(\theta) \, d\theta. \]

For \((F, G)\) as in the corollary, we obtain

\[\lambda_k \int_{S^{d-1}} Y_k(\theta) G(\theta) \, d\theta = 0. \]

Completeness of spherical harmonics in \(L^2(S^{d-1})\) immediately implies (1).
Trivially,

Funk–Hecke theorem

\[\Rightarrow \int_{\mathbb{S}^{d-1}} F(\omega \cdot \theta) Y_k(\omega) \, d\omega = \lambda_k Y_k(\theta) \]

\[\Rightarrow \int_{(\mathbb{S}^{d-1})^2} F(\omega \cdot \theta) Y_k(\omega) G(\theta) \, d\theta \, d\omega = \lambda_k \int_{\mathbb{S}^{d-1}} Y_k(\theta) G(\theta) \, d\theta. \]

For \((F, G)\) as in the corollary, we obtain

\[\lambda_k \int_{\mathbb{S}^{d-1}} Y_k(\theta) G(\theta) \, d\theta = 0. \]

Completeness of spherical harmonics in \(L^2(\mathbb{S}^{d-1})\) immediately implies (1).
Additionally, \(Y_k\) has same parity as \(k\). This yields (2) and (3).
A number of geometric quantities (such as volumes, $d - 1$-dimensional section areas,...) may be expressed in terms of

\[
\int_{\omega \cdot \theta \geq 0} G(\theta)(\theta \cdot \omega) \ell \, d\theta \quad \text{or} \quad \int_{\omega \cdot \theta = 0} G(\theta) \, d\theta
\]

in which case the corollary is often applicable.
A number of geometric quantities (such as volumes, \(d-1\)-dimensional section areas,...) may be expressed in terms of

\[
\int_{\omega \cdot \theta \geq 0} G(\theta)(\theta \cdot \omega) \ell \, d\theta \quad \text{or} \quad \int_{\omega \cdot \theta = 0} G(\theta) \, d\theta
\]

in which case the corollary is often applicable.

Apply to \(F(t) = t^\ell 1_{[0,1]}(t)\) and \(F\) is a Dirac mass at the origin, respectively.
A number of geometric quantities (such as volumes, $d - 1$-dimensional section areas,...) may be expressed in terms of

$$\int_{\omega \cdot \theta \geq 0} G(\theta)(\theta \cdot \omega)\ell \, d\theta \quad \text{or} \quad \int_{\omega \cdot \theta = 0} G(\theta) \, d\theta$$

in which case the corollary is often applicable.

Apply to $F(t) = t^\ell 1_{[0,1]}(t)$ and F is a Dirac mass at the origin, respectively.

The Busemann–Petty problem

Busemann–Petty (1956): If K_1 and K_2 are origin-symmetric convex bodies in \mathbb{R}^d such that
$$\text{vol}_{d-1}(K_1 \cap H) \leq \text{vol}_{d-1}(K_2 \cap H)$$
for all hyperplanes H containing the origin, is it true that
$$\text{vol}_d(K_1) \leq \text{vol}_d(K_2)?$$

No for $d \geq 5$: Larman–Rogers ($d \geq 12$), Ball ($d \geq 10$), Giannopoulos, Bourgain ($d \geq 7$), Gardner, Papadimitrakis ($d \geq 5$).

Yes for $d \leq 4$: Gardner ($d = 3$), Zhang ($d = 4$).

Short proof of $d = 4$ by Koldobsky using Funk–Hecke theorem.
Busemann–Petty (1956): If K_1 and K_2 are origin-symmetric convex bodies in \mathbb{R}^d such that

$$\text{vol}_{d-1}(K_1 \cap H) \leq \text{vol}_{d-1}(K_2 \cap H)$$

for all hyperplanes H containing the origin, is it true that

$$\text{vol}_d(K_1) \leq \text{vol}_d(K_2)?$$

No for $d \geq 5$: Larman–Rogers ($d \geq 12$), Ball ($d \geq 10$), Giannopoulos, Bourgain ($d \geq 7$), Gardner, Papadimitrakis ($d \geq 5$).

Yes for $d \leq 4$: Gardner ($d = 3$), Zhang ($d = 4$).

Short proof of $d = 4$ by Koldobsky using Funk–Hecke theorem.
The Busemann–Petty problem

Busemann–Petty (1956): If K_1 and K_2 are origin-symmetric convex bodies in \mathbb{R}^d such that

$$\operatorname{vol}_{d-1}(K_1 \cap H) \leq \operatorname{vol}_{d-1}(K_2 \cap H)$$

for all hyperplanes H containing the origin, is it true that

$$\operatorname{vol}_d(K_1) \leq \operatorname{vol}_d(K_2)?$$

No for $d \geq 5$: Larman–Rogers ($d \geq 12$), Ball ($d \geq 10$), Giannopoulos, Bourgain ($d \geq 7$), Gardner, Papadimitrakis ($d \geq 5$).
The Busemann–Petty problem

Busemann–Petty (1956): If K_1 and K_2 are origin-symmetric convex bodies in \mathbb{R}^d such that

$$\text{vol}_{d-1}(K_1 \cap H) \leq \text{vol}_{d-1}(K_2 \cap H)$$

for all hyperplanes H containing the origin, is it true that

$$\text{vol}_d(K_1) \leq \text{vol}_d(K_2)?$$

No for $d \geq 5$: Larman–Rogers ($d \geq 12$), Ball ($d \geq 10$), Giannopoulos, Bourgain ($d \geq 7$), Gardner, Papadimitrakis ($d \geq 5$).

Yes for $d \leq 4$: Gardner ($d = 3$), Zhang ($d = 4$).
The Busemann–Petty problem

Busemann–Petty (1956): If K_1 and K_2 are origin-symmetric convex bodies in \mathbb{R}^d such that

$$\text{vol}_{d-1}(K_1 \cap H) \leq \text{vol}_{d-1}(K_2 \cap H)$$

for all hyperplanes H containing the origin, is it true that

$$\text{vol}_d(K_1) \leq \text{vol}_d(K_2)?$$

No for $d \geq 5$: Larman–Rogers ($d \geq 12$), Ball ($d \geq 10$), Giannopoulos, Bourgain ($d \geq 7$), Gardner, Papadimitrakis ($d \geq 5$).

Yes for $d \leq 4$: Gardner ($d = 3$), Zhang ($d = 4$).

Short proof of $d = 4$ by Koldobsky using Funk–Hecke theorem.
Applications in analysis and PDE

Suppose T is the integral operator on $L^2(S^{d-1})$ given by

$$Tg(\theta) = \int_{S^{d-1}} g(\omega) K(\omega \cdot \theta) \, d\omega.$$
Suppose T is the integral operator on $L^2(\mathbb{S}^{d-1})$ given by

$$Tg(\theta) = \int_{\mathbb{S}^{d-1}} g(\omega) K(\omega \cdot \theta) \, d\omega.$$

Funk–Hecke theorem \Rightarrow T diagonalises with respect to spherical harmonics, with explicit expressions for the eigenvalues.
Suppose T is the integral operator on $L^2(S^{d-1})$ given by

$$Tg(\theta) = \int_{S^{d-1}} g(\omega)K(\omega \cdot \theta) d\omega.$$

Funk–Hecke theorem \Rightarrow T diagonalises with respect to spherical harmonics, with explicit expressions for the eigenvalues.

Expanding $g = \sum_{k \in \mathbb{N}_0} Y_k$,

$$Tg(\theta) = \sum_{k \in \mathbb{N}_0} \lambda_k Y_k(\theta)$$

where

$$\lambda_k = |S^{d-2}| \int_{-1}^{1} K(t)P_{k,d}(t)(1 - t^2)^{\frac{d-3}{2}} dt.$$
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^\lambda} \, dx \, dy \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)} \right)^{\frac{1-\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d-\lambda}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem.

They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group H^n.

For H^n, previously sharp form only known in a special case of λ (Jerison–Lee).

Originally considered by Folland–Stein (focus not on sharp constants).
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^{\lambda}} \, dx \, dy \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d-\frac{\lambda}{2})} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)} \right)^{1-\frac{\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $f = g = (1 + |\cdot|^2)^{-\frac{2d-\lambda}{2}}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem. They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group H^n. For H^n, previously sharp form only known in a special case of λ (Jerison–Lee). Originally considered by Folland–Stein (focus not on sharp constants).
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x) \overline{g(y)} \frac{dx dy}{|x - y|^{\lambda}} \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d - \lambda}$. Equality for $f = g = (1 + |\cdot|^2)^{-\frac{2d-\lambda}{2}}$.

Equivalently (via stereographic projection) on S^d, with $\lambda \in (0, d)$:

$$\left| \int_{S^d} \int_{S^d} F(\theta) \overline{G(\phi)} \frac{d\theta d\phi}{|\theta - \phi|^{\lambda}} \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|F\|_p \|G\|_p$$

where $p := \frac{2d}{2d - \lambda}$.
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

\[
\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x - y|^\lambda} \, dx \, dy \right| \leq \frac{\pi |\lambda|}{2} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma\left(d\right)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1-\frac{\lambda}{d}} \|f\|_p \|g\|_p
\]

where $p := \frac{2d}{2d-\lambda}$. Equality for $f = g = (1 + |\cdot|^2)^{-\frac{2d-\lambda}{2}}$.

Equivalently (via stereographic projection) on S^d, with $\lambda \in (0, d)$:

\[
\left| \int_{S^d} \int_{S^d} \frac{F(\theta)G(\phi)}{|\theta - \phi|^\lambda} \, d\theta \, d\phi \right| \leq \frac{\pi |\lambda|}{2} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma\left(d\right)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1-\frac{\lambda}{d}} \|F\|_p \|G\|_p
\]

where $p := \frac{2d}{2d-\lambda}$. Equality for $F = G = 1_{S^d}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem.

They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group H^n. For H^n, previously sharp form only known in a special case of λ (Jerison–Lee).

Originally considered by Folland–Stein (focus not on sharp constants).
Lieb’s sharp HLS inequality: On \(\mathbb{R}^d \), with \(\lambda \in (0, d) \):
\[
\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x - y|^\lambda} \, dx \, dy \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d - \frac{\lambda}{2})} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|f\|_p \|g\|_p
\]
where \(p := \frac{2d}{2d-\lambda} \). Equality for \(f = g = \left(1 + |\cdot|^2\right)^{-\frac{2d-\lambda}{2}} \).

Equivalently (via stereographic projection) on \(S^d \), with \(\lambda \in (0, d) \):
\[
\left| \int_{S^d} \int_{S^d} \frac{F(\theta)G(\phi)}{|\theta - \phi|^\lambda} \, d\theta \, d\phi \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d - \frac{\lambda}{2})} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|F\|_p \|G\|_p
\]
where \(p := \frac{2d}{2d-\lambda} \). Equality for \(F = G = 1_{S^d} \).

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem.
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^\lambda} \, dx \, dy \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d-\frac{\lambda}{2})} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)} \right)^{1-\frac{\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $f = g = (1 + |\cdot|^2)^{-\frac{2d-\lambda}{2}}$.

Equivalently (via stereographic projection) on S^d, with $\lambda \in (0, d)$:

$$\left| \int_{S^d} \int_{S^d} \frac{F(\theta)G(\phi)}{|\theta-\phi|^\lambda} \, d\theta \, d\phi \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d-\frac{\lambda}{2})} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)} \right)^{1-\frac{\lambda}{d}} \|F\|_p \|G\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $F = G = 1_{S^d}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem. They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group \mathbb{H}^n.
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^{\lambda}} \, dx \, dy \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $f = g = (1 + | \cdot |^2)^{-\frac{2d-\lambda}{2}}$.

Equivalently (via stereographic projection) on S^d, with $\lambda \in (0, d)$:

$$\left| \int_{S^d} \int_{S^d} \frac{F(\theta)G(\phi)}{|\theta-\phi|^{\lambda}} \, d\theta \, d\phi \right| \leq \pi^{\frac{\lambda}{2}} \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma\left(d - \frac{\lambda}{2}\right)} \left(\frac{\Gamma(d)}{\Gamma\left(\frac{d}{2}\right)}\right)^{1 - \frac{\lambda}{d}} \|F\|_p \|G\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $F = G = 1_{S^d}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem. They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group \mathbb{H}^n.

For \mathbb{H}^n, previously sharp form only known in a special case of λ (Jerison–Lee).
Lieb’s sharp HLS inequality: On \mathbb{R}^d, with $\lambda \in (0, d)$:

$$\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^\lambda} \, dx \, dy \right| \leq \pi \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d-\lambda)} \left(\Gamma\left(\frac{d}{2}\right) \right)^{1-\frac{\lambda}{d}} \|f\|_p \|g\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $f = g = (1 + |\cdot|^2)^{-\frac{2d-\lambda}{2}}$.

Equivalently (via stereographic projection) on S^d, with $\lambda \in (0, d)$:

$$\left| \int_{S^d} \int_{S^d} \frac{F(\theta)G(\phi)}{|\theta-\phi|^\lambda} \, d\theta \, d\phi \right| \leq \pi \frac{\Gamma\left(\frac{d-\lambda}{2}\right)}{\Gamma(d-\lambda)} \left(\Gamma\left(\frac{d}{2}\right) \right)^{1-\frac{\lambda}{d}} \|F\|_p \|G\|_p$$

where $p := \frac{2d}{2d-\lambda}$. Equality for $F = G = 1_{S^d}$.

Frank–Lieb: recent rearrangement-free proof using Funk–Hecke theorem. They proved with the same technique the analogous sharp HLS inequality on the Heisenberg group \mathbb{H}^n.

For \mathbb{H}^n, previously sharp form only known in a special case of λ (Jerison–Lee). Originally considered by Folland–Stein (focus not on sharp constants).
Christ–Liu–Zhang (in a pair of papers about 3 weeks ago): established sharp HLS inequalities on quaternionic Heisenberg groups, and the octonionic Heisenberg group.
Christ–Liu–Zhang (in a pair of papers about 3 weeks ago): established sharp HLS inequalities on quaternionic Heisenberg groups, and the octonionic Heisenberg group. Used the Frank-Lieb strategy and versions of the Funk–Hecke theorem adapted to these groups.
Christ–Liu–Zhang (in a pair of papers about 3 weeks ago): established sharp HLS inequalities on quaternionic Heisenberg groups, and the octonionic Heisenberg group. Used the Frank-Lieb strategy and versions of the Funk–Hecke theorem adapted to these groups.

Beckner: solved conjecture of Stein on contraction properties of Poisson semigroup on S^d using Lieb’s sharp HLS and Funk–Hecke theorem.
Sharp weighted Fourier extension/Kato-smoothing

For \((x, t) \in \mathbb{R}^d \times \mathbb{R}\), consider

\[Sf(x, t) = |x| - \tau \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t |\xi|^2)}|\xi|^{1-\tau} f(\xi) \, d\xi\]

where \(\tau \in (1, d)\).

Interpretation as Fourier extension operator associated with the paraboloid

\[
\{ (\xi, \frac{1}{2} |\xi|^2) : \xi \in \mathbb{R}^d \} \subset \mathbb{R}^d + 1,
\]

or as a solution operator through

\[\hat{S}f(x, t) = (2\pi)^d \frac{1}{x| |x|^2 - \tau (\frac{1}{2} \Delta)^{1/2} \tau u(x, t)}\]

where \(i \partial_t u + \frac{1}{2} \Delta u = 0\) with initial data \(f\).
Sharp weighted Fourier extension/Kato-smoothing

For \((x, t) \in \mathbb{R}^d \times \mathbb{R}\), consider

\[
Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1-\frac{\tau}{2}} f(\xi) \, d\xi
\]

where \(\tau \in (1, d)\).
For \((x, t) \in \mathbb{R}^d \times \mathbb{R}\), consider
\[
Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1 - \frac{\tau}{2}} f(\xi) \, d\xi
\]
where \(\tau \in (1, d)\).

Interpretation as **Fourier extension operator** associated with the paraboloid \(\{(\xi, \frac{1}{2}|\xi|^2) : \xi \in \mathbb{R}^d\} \subset \mathbb{R}^{d+1}\),
Sharp weighted Fourier extension/Kato-smoothing

For \((x, t) \in \mathbb{R}^d \times \mathbb{R}\), consider

\[
Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t |\xi|^2)} |\xi|^{1 - \frac{\tau}{2}} f(\xi) \, d\xi
\]

where \(\tau \in (1, d)\).

Interpretation as **Fourier extension operator** associated with the paraboloid \(\{ (\xi, \frac{1}{2}|\xi|^2) : \xi \in \mathbb{R}^d \} \subset \mathbb{R}^{d+1}\),

or as a **solution operator** through

\[
S\hat{f}(x, t) = (2\pi)^d |x|^{-\frac{\tau}{2}} (-\Delta)^{\frac{1}{2} - \frac{\tau}{4}} u(x, t)
\]

where \(i\partial_t u + \frac{1}{2} \Delta u = 0\) with initial data \(f\).
Recall

\[Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1-\frac{\tau}{2}} f(\xi) \, d\xi. \]
Recall

$$Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1-\frac{\tau}{2}} f(\xi) \, d\xi.$$

Theorem (B–Sugimoto)

For each $k \in \mathbb{N}_0$,

$$S^* Sf = \lambda_k f$$

where

$$f(\eta) = Y_k(\frac{\eta}{|\eta|}) f_0(|\eta|)|\eta|^{-\frac{d-1}{2}},$$

Y_k is any spherical harmonic of degree k, $f_0 \in L^2(0, \infty)$, and

$$\lambda_k = (2\pi)^{d+1} 2^{1-\tau} \frac{\Gamma(\tau - 1) \Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2 \Gamma(k + \frac{d+\tau}{2} - 1)}.$$
Recall
\[
Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1-\frac{\tau}{2}} f(\xi) \, d\xi.
\]

Theorem (B–Sugimoto)

For each \(k \in \mathbb{N}_0 \),
\[
S^* Sf = \lambda_k f
\]
where
\[
f(\eta) = Y_k(\frac{\eta}{|\eta|}) f_0(|\eta|) |\eta|^{-\frac{d-1}{2}},
\]
\(Y_k \) is any spherical harmonic of degree \(k \), \(f_0 \in L^2(0, \infty) \), and
\[
\lambda_k = (2\pi)^{d+1} 2^{1-\tau} \frac{\Gamma(\tau - 1) \Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2 \Gamma(k + \frac{d+\tau}{2} - 1)}.
\]
Moreover, \((\lambda_k)_{k \in \mathbb{N}_0}\) is a strictly decreasing sequence.
Recall

\[Sf(x, t) = |x|^{-\frac{\tau}{2}} \int_{\mathbb{R}^d} e^{i(x \cdot \xi + \frac{1}{2} t|\xi|^2)} |\xi|^{1-\frac{\tau}{2}} f(\xi) \, d\xi. \]

Theorem (B–Sugimoto)

For each \(k \in \mathbb{N}_0 \),

\[\mathcal{S}^* \mathcal{S} f = \lambda_k f \]

where

\[f(\eta) = Y_k(\frac{\eta}{|\eta|}) f_0(|\eta|) |\eta|^{-\frac{d-1}{2}}, \]

\(Y_k \) is any spherical harmonic of degree \(k \), \(f_0 \in L^2(0, \infty) \), and

\[\lambda_k = (2\pi)^{d+1} 2^{1-\tau} \frac{\Gamma(\tau - 1) \Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2 \Gamma(k + \frac{d+\tau}{2} - 1)}. \]

Moreover, \((\lambda_k)_{k \in \mathbb{N}_0} \) is a strictly decreasing sequence.

Hence, \(\|S\|_{L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{d+1})} = \sqrt{\lambda_0} \) which is attained if and only if \(f \) is radially symmetric.
Relabelling $s = \frac{\tau}{2} - 1$ ($\tau \in (1, d) \iff s \in (-\frac{1}{2}, \frac{d}{2} - 1)$).
Relabelling $s = \frac{\tau}{2} - 1$ ($\tau \in (1, d) \iff s \in (-\frac{1}{2}, \frac{d}{2} - 1)$).

Corollary (Simon, Watanabe)

Let $d \geq 2$ and $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$. If $i \partial_t u + \frac{1}{2} \Delta u = 0$ then

$$\int \int_{\mathbb{R}^d} |u(x, t)|^2 \frac{dx dt}{|x|^{2(s+1)}} \leq C(d, s)\|u(0)\|^2_{\dot{H}^s(\mathbb{R}^d)},$$

where

$$C(d, s) = \pi 2^{-2s} \frac{\Gamma(2s + 1)\Gamma(\frac{d}{2} - s - 1)}{\Gamma(s + 1)^2\Gamma(\frac{d}{2} + s)}.$$

The constant is sharp and equality holds if and only if $u(0) \in \dot{H}^s(\mathbb{R}^d)$ is radially symmetric.
A calculation shows that

\[S^* S f(\eta) = C(d, \tau) \int_{S^{d-1}} \frac{f(|\eta|\omega)}{|\omega - \eta'|^{d-\tau}} \, d\omega \]

for some explicitly computable constant \(C(d, \tau) \). Here, \(\eta' = |\eta| \).
A calculation shows that

\[S^* Sf(\eta) = C(d, \tau) \int_{\mathbb{S}^{d-1}} \frac{f(|\eta|\omega)}{|\omega - \eta'|^{d-\tau}} \, d\omega \]

for some explicitly computable constant \(C(d, \tau) \). Here, \(\eta' = \frac{\eta}{|\eta|} \).

Applied to

\[f(\eta) = Y_k(\frac{\eta}{|\eta|}) f_0(|\eta|) |\eta|^{-\frac{d-1}{2}} \]

the angular and radial variables split, and the result follows from the Funk–Hecke theorem.
The \(\frac{1}{2} \)-derivative endpoint: localisation

Recall that for \(d \geq 2 \) and \(s \in (-\frac{1}{2}, \frac{d}{2} - 1) \),

\[
\int_{\mathbb{R}} \int_{\mathbb{R}^d} |u(x, t)|^2 \frac{\mathrm{d}x\mathrm{d}t}{|x|^{2(s+1)}} \leq C(d, s)\|u(0)\|_{H^s(\mathbb{R}^d)}^2,
\]

whenever \(i\partial_t u + \frac{1}{2} \Delta u = 0 \), and this fails for \(s = -\frac{1}{2} \).
The $\frac{1}{2}$-derivative endpoint: localisation

Recall that for $d \geq 2$ and $s \in \left(-\frac{1}{2}, \frac{d}{2} - 1\right)$,

$$\int_{\mathbb{R}} \int_{\mathbb{R}^d} |u(x, t)|^2 \frac{dx dt}{|x|^{2(s+1)}} \leq C(d, s) \|u(0)\|_{\dot{H}^s(\mathbb{R}^d)}^2,$$

whenever $i \partial_t u + \frac{1}{2} \Delta u = 0$, and this fails for $s = -\frac{1}{2}$.

One recovers a full half-derivative gain by spatial localising

$$\sup_{R > 0} \frac{1}{R} \int_{\mathbb{R}} \int_{|x| \leq R} |\nabla u(x, t)|^2 \, dx dt \leq C \|u(0)\|_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^d)}^2.$$

Proved separately by Constantin–Saut, Sjölin and Vega.
The $\frac{1}{2}$-derivative endpoint: localisation

Recall that for $d \geq 2$ and $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$,

$$\int_{\mathbb{R}} \int_{\mathbb{R}^d} |u(x, t)|^2 \frac{dxdt}{|x|^{2(s+1)}} \leq C(d, s)\|u(0)\|^2_{\dot{H}^s(\mathbb{R}^d)},$$

whenever $i \partial_t u + \frac{1}{2} \Delta u = 0$, and this fails for $s = -\frac{1}{2}$.

One recovers a full half-derivative gain by spatial localising

$$\sup_{R>0} \frac{1}{R} \int_{\mathbb{R}} \int_{|x| \leq R} |\nabla u(x, t)|^2 dxdt \leq C\|u(0)\|^2_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^d)}.$$

Proved separately by Constantin–Saut, Sjölin and Vega.

Vega–Visciglia proved there is a reverse form

$$\sup_{R>0} \frac{1}{R} \int_{\mathbb{R}} \int_{|x| \leq R} |\nabla u(x, t)|^2 dxdt \geq c\|u(0)\|^2_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^d)}.$$
The $\frac{1}{2}$-derivative endpoint: angular regularity

Theorem (\leq Hoshiro, Sugimoto; \geq Fang–Wang)

Let $d \geq 2$ and $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$. Then there exist constants

$$0 < c(d, s) \leq C(d, s) < \infty$$

such that whenever $i\partial_t u + \frac{1}{2} \Delta u = 0$ we have
The $\frac{1}{2}$-derivative endpoint: angular regularity

Theorem (≤ Hoshiro, Sugimoto; ≥ Fang–Wang)

Let $d \geq 2$ and $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$. Then there exist constants

$$0 < c(d, s) \leq C(d, s) < \infty$$

such that whenever $i\partial_t u + \frac{1}{2} \Delta u = 0$ we have

$$\int_{\mathbb{R}} \int_{\mathbb{R}^d} |(1 - \Lambda)^{\frac{1+2s}{4}} u(x, t)|^2 \frac{dx dt}{|x|^{2(1+s)}} \leq C(d, s) \|u(0)\|_{H^s(\mathbb{R}^d)}^2$$

and

$$\int_{\mathbb{R}} \int_{\mathbb{R}^d} |(1 - \Lambda)^{\frac{1+2s}{4}} u(x, t)|^2 \frac{dx dt}{|x|^{2(1+s)}} \geq c(d, s) \|u(0)\|_{H^s(\mathbb{R}^d)}^2.$$

Here, Λ is the Laplace–Beltrami operator on S^{d-1}.
The $\frac{1}{2}$-derivative endpoint: angular regularity

Theorem (≤ Hoshiro, Sugimoto; ≥ Fang–Wang)

Let $d \geq 2$ and $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$. Then there exist constants

$$0 < c(d, s) \leq C(d, s) < \infty$$

such that whenever $i\partial_t u + \frac{1}{2} \Delta u = 0$ we have

$$\int \int \int_{\mathbb{R}^d} |(1 - \Lambda)^{\frac{1+2s}{4}} u(x, t)|^2 \frac{dxdt}{|x|^{2(1+s)}} \leq C(d, s) \|u(0)\|_{\dot{H}^s(\mathbb{R}^d)}^2$$

and

$$\int \int \int_{\mathbb{R}^d} |(1 - \Lambda)^{\frac{1+2s}{4}} u(x, t)|^2 \frac{dxdt}{|x|^{2(1+s)}} \geq c(d, s) \|u(0)\|_{\dot{H}^s(\mathbb{R}^d)}^2.$$

Here, Λ is the Laplace–Beltrami operator on \mathbb{S}^{d-1}. (Heuristically, $(-\Lambda)^{\sigma} \sim |x|^{2\sigma} D^{2\sigma}$.)
Let $d \geq 2$, $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$, and θ a function on $[0, \infty)$.
Let $d \geq 2$, $s \in (-\frac{1}{2}, \frac{d}{2} - 1)$, and θ a function on $[0, \infty)$. For each $k \in \mathbb{N}_0$, define

$$
\beta_k = \pi 2^{-2s} \frac{\Gamma(2s + 1)\Gamma(k + \frac{d}{2} - s - 1)}{\Gamma(s + 1)^2 \Gamma(k + \frac{d}{2} + s)} |\theta(k(k + d - 2))|^2.
$$
Let $d \geq 2$, $s \in \left(-\frac{1}{2}, \frac{d}{2} - 1\right)$, and θ a function on $[0, \infty)$. For each $k \in \mathbb{N}_0$, define

$$\beta_k = \pi 2^{-2s} \frac{\Gamma(2s + 1)\Gamma(k + \frac{d}{2} - s - 1)}{\Gamma(s + 1)^2\Gamma(k + \frac{d}{2} + s)} |\theta(k(k + d - 2))|^2.$$

Set

$$b = \inf_{\ell \in \mathbb{N}_0} \beta_\ell, \quad B = \sup_{\ell \in \mathbb{N}_0} \beta_\ell,$$

and

$$k = \{k \in \mathbb{N}_0 : b = \beta_k\} \quad \text{and} \quad K = \{k \in \mathbb{N}_0 : B = \beta_k\}.$$
Let \(d \geq 2 \), \(s \in (-\frac{1}{2}, \frac{d}{2} - 1) \), and \(\theta \) a function on \([0, \infty)\). For each \(k \in \mathbb{N}_0 \), define

\[
\beta_k = \pi 2^{-2s} \frac{\Gamma(2s + 1) \Gamma(k + \frac{d}{2} - s - 1)}{\Gamma(s + 1)^2 \Gamma(k + \frac{d}{2} + s)} |\theta(k(k + d - 2))|^2.
\]

Set

\[
b = \inf_{\ell \in \mathbb{N}_0} \beta_\ell, \quad B = \sup_{\ell \in \mathbb{N}_0} \beta_\ell,
\]

and

\[
k = \{ k \in \mathbb{N}_0 : b = \beta_k \} \quad \text{and} \quad K = \{ k \in \mathbb{N}_0 : B = \beta_k \}.
\]

Write \(\mathcal{H}_k \) for the space of all linear combinations of functions

\[
\eta \mapsto Y_k(\frac{\eta}{|\eta|}) f_0(|\eta|)|\eta|^{-\frac{d-1}{2}}
\]

where \(Y_k \) is a spherical harmonic of order \(k \) and \(f_0 \in L^2(0, \infty) \).
Theorem (B–Sugimoto)

If \(i \partial_t u + \frac{1}{2} \Delta u = 0 \) then

\[
\mathbf{b} \| u(0) \|_{H^s(\mathbb{R}^d)}^2 \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\theta(-\Lambda) u(x, t)|^2 \frac{dx \, dt}{|x|^{2(1+s)}} \leq \mathbf{B} \| u(0) \|_{H^s(\mathbb{R}^d)}^2
\]

and the constants are sharp. Also, \(u(0) \) is an extremiser for the lower bound if and only if \(D_s u(0) \in \bigoplus_{k \in K} H^k \), and an extremiser for the upper bound if and only if \(D_s u(0) \in \bigoplus_{k \in K} H^k \).

Hoshiro, Sugimoto and Fang–Wang equivalences correspond to \(\theta(\rho) = (1 + \rho)^{1+2s/4} \).

Stirling’s formula easily gives \(b > 0 \) and \(B < \infty \) in this case.
Theorem (B–Sugimoto)

If $i\partial_t u + \frac{1}{2} \Delta u = 0$ then

$$b \|u(0)\|_{H^s(\mathbb{R}^d)}^2 \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\theta(-\Lambda) u(x, t)|^2 \frac{dxdt}{|x|^{2(1+s)}} \leq B \|u(0)\|_{H^s(\mathbb{R}^d)}^2$$

and the constants are sharp. Also, $u(0)$ is an extremiser for the lower bound if and only if $D^s u(0) \in \bigoplus_{k \in k} \mathcal{H}_k$, and an extremiser for the upper bound if and only if $D^s u(0) \in \bigoplus_{k \in K} \mathcal{H}_k$.
Theorem (B–Sugimoto)

If \(i \partial_t u + \frac{1}{2} \Delta u = 0 \) then

\[
b \| u(0) \|_{H^s(\mathbb{R}^d)}^2 \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\theta(-\Lambda) u(x, t)|^2 \frac{dxdt}{|x|^{2(1+s)}} \leq B \| u(0) \|_{H^s(\mathbb{R}^d)}^2
\]

and the constants are sharp. Also, \(u(0) \) is an extremiser for the lower bound if and only if \(D^s u(0) \in \bigoplus_{k \in K} \mathcal{H}_k \), and an extremiser for the upper bound if and only if \(D^s u(0) \in \bigoplus_{k \in K} \mathcal{H}_k \).

Hoshiro, Sugimoto and Fang–Wang equivalences correspond to

\[
\theta(\rho) = (1 + \rho)^{\frac{1+2s}{4}}.
\]
Theorem (B–Sugimoto)

If \(i\partial_t u + \frac{1}{2} \Delta u = 0 \) then

\[
\mathbf{b} \| u(0) \|^2_{H^s(\mathbb{R}^d)} \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\theta(-\Lambda) u(x, t)|^2 \frac{dx dt}{|x|^{2(1+s)}} \leq \mathbf{B} \| u(0) \|^2_{H^s(\mathbb{R}^d)}
\]

and the constants are sharp. Also, \(u(0) \) is an extremiser for the lower bound if and only if \(D^s u(0) \in \bigoplus_{k \in K} \mathcal{H}_k \), and an extremiser for the upper bound if and only if \(D^s u(0) \in \bigoplus_{k \in K} \mathcal{H}_k \).

Hoshiro, Sugimoto and Fang–Wang equivalences correspond to

\[
\theta(\rho) = (1 + \rho)^{\frac{1+2s}{4}}.
\]

Stirling’s formula easily gives \(\mathbf{b} > 0 \) and \(\mathbf{B} < \infty \) in this case.
(Re-)Relabelling $\tau = 2(1 + s)$ (so that $\tau \in (1, d)$).
(Re-)Relabelling $\tau = 2(1 + s)$ (so that $\tau \in (1, d)$).

Seek $b = \inf_{k \in \mathbb{N}_0} \beta_k$ and $B = \sup_{k \in \mathbb{N}_0} \beta_k$, where

$$
\beta_k = \pi 2^{2-\tau} \frac{\Gamma(\tau - 1) \Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2 \Gamma(k + \frac{d+\tau}{2} - 1)} (1 + k(k + d - 2))^{\frac{\tau - 1}{2}}.
$$
(Re-)Relabelling $\tau = 2(1 + s)$ (so that $\tau \in (1, d)$).

Seek $b = \inf_{k \in \mathbb{N}_0} \beta_k$ and $B = \sup_{k \in \mathbb{N}_0} \beta_k$, where

$$
\beta_k = \pi 2^{2-\tau} \frac{\Gamma(\tau - 1) \Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2 \Gamma(k + \frac{d+\tau}{2} - 1)} (1 + k(k + d - 2))^{\frac{\tau - 1}{2}}.
$$

We also want to identify

$$
k = \{ k \in \mathbb{N}_0 : b = \beta_k \}, \quad K = \{ k \in \mathbb{N}_0 : B = \beta_k \}.
$$
(Re-)Relabelling $\tau = 2(1 + s)$ (so that $\tau \in (1, d)$).

Seek $b = \inf_{k \in \mathbb{N}_0} \beta_k$ and $B = \sup_{k \in \mathbb{N}_0} \beta_k$, where

$$\beta_k = \pi 2^{2-\tau} \frac{\Gamma(\tau - 1)\Gamma(k + \frac{d-\tau}{2})}{\Gamma(\frac{\tau}{2})^2\Gamma(k + \frac{d+\tau}{2} - 1)} (1 + k(k + d - 2))^{\frac{\tau}{2} - 1}. $$

We also want to identify

$$k = \{k \in \mathbb{N}_0 : b = \beta_k\}, \quad K = \{k \in \mathbb{N}_0 : B = \beta_k\}.$$

For $d \geq 5$, define $\tau_*, \tau^* \in (1, d)$, $\tau_* \leq \tau^*$, by

$$d^{\frac{\tau_*-1}{2}} \left(\frac{d - \tau_*}{2}\right) = \frac{d + \tau_*}{2} - 1 \quad \text{and} \quad \Gamma\left(\frac{d-\tau^*}{2}\right) = \Gamma\left(\frac{d+\tau^*}{2} - 1\right).$$
For $d = 5$ and $\tau \in [\tau_*, 5)$, let $k(\tau) \in [0, \infty)$ satisfy

$$\frac{2k(\tau) + 5 - \tau}{2k(\tau) + 3 + \tau} \left(\frac{1 + (k(\tau) + 1)(k(\tau) + 4)}{1 + k(\tau)(k(\tau) + 3)} \right)^{\frac{\tau-1}{2}} = 1$$

and let $k^*(\tau) = \text{ceiling}(k(\tau))$.
For \(d = 5 \) and \(\tau \in [\tau_*, 5) \), let \(k(\tau) \in [0, \infty) \) satisfy

\[
\frac{2k(\tau) + 5 - \tau}{2k(\tau) + 3 + \tau} \left(\frac{1 + (k(\tau) + 1)(k(\tau) + 4)}{1 + k(\tau)(k(\tau) + 3)} \right)^{\frac{\tau-1}{2}} = 1
\]

and let \(k^*(\tau) = \text{ceiling}(k(\tau)) \).

We know

\[
\frac{C_1}{(5 - \tau)^{1/4}} \leq k(\tau) \leq \frac{C_2}{(5 - \tau)^{1/2}}
\]

for some positive constants \(C_1 \) and \(C_2 \).
The case $\theta(\rho) = (1 + \rho) \frac{\tau - 1}{4}$, $\tau \in (1, d)$

Theorem (B–Sugimoto)

Let $d \geq 2$, $\tau \in (1, d)$ and $\theta(\rho) = (1 + \rho) \frac{\tau - 1}{4}$. Then
The case $\theta(\rho) = (1 + \rho)^{\frac{\tau - 1}{4}}$, $\tau \in (1, d)$

Theorem (B–Sugimoto)

Let $d \geq 2$, $\tau \in (1, d)$ and $\theta(\rho) = (1 + \rho)^{\frac{\tau - 1}{4}}$. Then

<table>
<thead>
<tr>
<th>(d, τ)</th>
<th>$\lim_{k \to \infty} \beta_k$</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 2, 3$</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
<td>β_0</td>
</tr>
<tr>
<td>$d = 4$, $\tau \in (1, 2)$</td>
<td>β_0</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
</tr>
<tr>
<td>$d = 4$, $\tau = 2$</td>
<td>π</td>
<td>π</td>
</tr>
<tr>
<td>$d = 4$, $\tau \in (2, 4)$</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
<td>β_0</td>
</tr>
<tr>
<td>$d = 5$, $\tau \in (1, \tau^*_\ast)$</td>
<td>β_0</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
</tr>
<tr>
<td>$d = 5$, $\tau \in [\tau^_\ast, \tau^_\ast)$</td>
<td>$\beta_{k^*_\ast}(\tau)$</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
</tr>
<tr>
<td>$d = 5$, $\tau \in [\tau^*_\ast, 5)$</td>
<td>$\beta_{k^*_\ast}(\tau)$</td>
<td>β_0</td>
</tr>
<tr>
<td>$d \geq 6$, $\tau \in (1, \tau^*_\ast)$</td>
<td>β_0</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
</tr>
<tr>
<td>$d \geq 6$, $\tau \in [\tau^_\ast, \tau^_\ast)$</td>
<td>β_1</td>
<td>$\lim_{k \to \infty} \beta_k$</td>
</tr>
<tr>
<td>$d \geq 6$, $\tau \in [\tau^*_\ast, d)$</td>
<td>β_1</td>
<td>β_0</td>
</tr>
</tbody>
</table>
The case $\theta(\rho) = (1 + \rho)^{\frac{\tau - 1}{4}}$, $\tau \in (1, d)$

and

<table>
<thead>
<tr>
<th>(d, τ)</th>
<th>k</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 2, 3$</td>
<td>\emptyset</td>
<td>${0}$</td>
</tr>
<tr>
<td>$d = 4, \tau \in (1, 2)$</td>
<td>${0}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d = 4, \tau = 2$</td>
<td>\mathbb{N}_0</td>
<td>\mathbb{N}_0</td>
</tr>
<tr>
<td>$d = 4, \tau \in (2, 4)$</td>
<td>\emptyset</td>
<td>${0}$</td>
</tr>
<tr>
<td>$d = 5, \tau \in (1, \tau_*)$</td>
<td>${0}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d = 5, \tau \in [\tau_, \tau^), k(\tau) \notin \mathbb{N}_0$</td>
<td>${k^*(\tau)}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d = 5, \tau \in [\tau_, \tau^), k(\tau) \in \mathbb{N}_0$</td>
<td>${k^(\tau), k^(\tau) + 1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d = 5, \tau \in [\tau^*, 5), k(\tau) \notin \mathbb{N}_0$</td>
<td>${k^*(\tau)}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$d = 5, \tau \in [\tau^*, 5), k(\tau) \in \mathbb{N}_0$</td>
<td>${k^(\tau), k^(\tau) + 1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$d \geq 6, \tau \in (1, \tau_*)$</td>
<td>${0}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d \geq 6, \tau = \tau_*$</td>
<td>${0,1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d \geq 6, \tau \in (\tau_, \tau^)$</td>
<td>${1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$d \geq 6, \tau \in [\tau^*, d)$</td>
<td>${1}$</td>
<td>${0}$</td>
</tr>
</tbody>
</table>
Sharp trace theorem on S^{d-1}

Let $Rf := f|_{S^{d-1}}$ and
Sharp trace theorem on S^{d-1}

Let $Rf := f|_{S^{d-1}}$ and $T_\theta g := R\tilde{\theta}(-\Lambda)D^{-s}g$. Also

$$\lambda_k = 2^{1-2s} \frac{\Gamma(2s-1)\Gamma(k + \frac{d}{2} - s)}{\Gamma(s)^2\Gamma(k + \frac{d}{2} - 1 + s)} |\theta(k(k + d - 2))|^2.$$

and $K = \{ k \in \mathbb{N}_0 : \lambda_k = \sup_{\ell \in \mathbb{N}_0} \lambda_{\ell} \}$.

Theorem (B–Machihara–Sugimoto)

Let $d \geq 2$ and $s \in (\frac{1}{2}, \frac{d}{2})$. Then

$$\|R\tilde{\theta}(-\Lambda)f\|_{L^2(S^{d-1})} \leq \sup_{k \in \mathbb{N}_0} \lambda_k \|f\|_{\dot{H}^s(R^d)}$$

where the constant is optimal and the space of extremisers is precisely the nonzero elements of $D^{-s}T^*\theta(\bigoplus_{k \in K} H_k)$.
Sharp trace theorem on S^{d-1}

Let $Rf := f|_{S^{d-1}}$ and $T_\theta g := R\overline{\theta}(-\Lambda)D^{-s}g$. Also

$$\lambda_k = 2^{1-2s} \frac{\Gamma(2s-1)\Gamma(k + \frac{d}{2} - s)}{\Gamma(s)^2\Gamma(k + \frac{d}{2} - 1 + s)} |\theta(k(k + d - 2))|^2.$$

and $K = \{ k \in \mathbb{N}_0 : \lambda_k = \sup_{\ell \in \mathbb{N}_0} \lambda_\ell \}$.

Theorem (B–Machihara–Sugimoto)

Let $d \geq 2$ and $s \in \left(\frac{1}{2}, \frac{d}{2}\right)$. Then

$$\| R\overline{\theta}(-\Lambda)f \|_{L^2(S^{d-1})}^2 \leq \sup_{k \in \mathbb{N}_0} \lambda_k \| f \|_{H^s(\mathbb{R}^d)}^2$$

where the constant is optimal and the space of extremisers is precisely the nonzero elements of $D^{-s} T_\theta^ (\bigoplus_{k \in K} \mathcal{H}_k)$.*
Sharp trace theorem on \mathbb{S}^{d-1}

Let $Rf := f|_{\mathbb{S}^{d-1}}$ and $T_\theta g := R \bar{\theta}(-\Lambda)D^{-s}g$. Also

$$\lambda_k = 2^{1-2s} \frac{\Gamma(2s - 1)\Gamma(k + \frac{d}{2} - s)}{\Gamma(s)^2 \Gamma(k + \frac{d}{2} - 1 + s)} |\theta(k(k + d - 2))|^2.$$

and $K = \{ k \in \mathbb{N}_0 : \lambda_k = \sup_{\ell \in \mathbb{N}_0} \lambda_\ell \}$.

Theorem (B–Machihara–Sugimoto)

Let $d \geq 2$ and $s \in \left(\frac{1}{2}, \frac{d}{2}\right)$. Then

$$\| R \bar{\theta}(-\Lambda)f \|^2_{L^2(\mathbb{S}^{d-1})} \leq \sup_{k \in \mathbb{N}_0} \lambda_k \| f \|^2_{H^s(\mathbb{R}^d)}$$

where the constant is optimal and the space of extremisers is precisely the nonzero elements of $D^{-s} T_\theta^(\bigoplus_{k \in K} \mathcal{H}_k)$.*

Trace theorems with angular regularity considered by Fang–Wang.
When $\theta = 1$ we have

$$T_1 T_1^* G(\omega) = 2^{-2s} \pi^{-d/2} \frac{\Gamma(d/2 - s)}{\Gamma(s)} \int_{\mathbb{S}^{d-1}} \frac{G(\varphi)}{|\omega - \varphi|^{d-2s}} \, d\sigma(\varphi)$$

and we may apply the Funk–Hecke theorem.
When $\theta = 1$ we have

$$T_1 T_1^* G(\omega) = 2^{-2s} \pi^{-\frac{d}{2}} \frac{\Gamma\left(\frac{d}{2} - s\right)}{\Gamma(s)} \int_{S^{d-1}} \frac{G(\varphi)}{|\omega - \varphi|^{d-2s}} \, d\sigma(\varphi)$$

and we may apply the Funk–Hecke theorem.

In this case, f is an extremiser if and only if

$$f \in \text{span}(| \cdot |^{2s-d} * d\sigma) \setminus \{0\}.$$
When $\theta = 1$ we have

$$T_1 T_1^* G(\omega) = 2^{-2s} \pi^{-d/2} \frac{\Gamma\left(\frac{d}{2} - s\right)}{\Gamma(s)} \int_{S^{d-1}} \frac{G(\varphi)}{|\omega - \varphi|^{d-2s}} \, d\sigma(\varphi)$$

and we may apply the Funk–Hecke theorem.

In this case, f is an extremiser if and only if

$$f \in \text{span}(|\cdot|^{2s-d} \ast d\sigma) \setminus \{0\}.$$

When $d = 3$, for $s \in \left(\frac{1}{2}, \frac{3}{2}\right)$,

$$|\cdot|^{2s-3} \ast d\sigma(x) = C(s) \frac{(|x| + 1)^{2s-1} - |x| - 1}{|x|}.$$
When $\theta = 1$ we have

$$T_1 T_1^* G(\omega) = 2^{-2s} \pi^{-\frac{d}{2}} \frac{\Gamma\left(\frac{d}{2} - s\right)}{\Gamma(s)} \int_{S^{d-1}} \frac{G(\varphi)}{|\omega - \varphi|^{d-2s}} \, d\sigma(\varphi)$$

and we may apply the Funk–Hecke theorem.

In this case, f is an extremiser if and only if

$$f \in \text{span}(|\cdot|^{2s-d} * d\sigma) \setminus \{0\}.$$

When $d = 3$, for $s \in (\frac{1}{2}, \frac{3}{2})$,

$$|\cdot|^{2s-3} * d\sigma(x) = C(s) \frac{(|x| + 1)^{2s-1} - |x| - 1|^{2s-1}}{|x|}.$$

For $(d, s) = (3, 1)$, extremisers for

$$\|f\|_{S^2} \leq \|\nabla f\|_{L^2(\mathbb{R}^3)}$$

are precisely nonzero multiples of

$$f(x) = \begin{cases} 1 & \text{if } |x| \leq 1 \\ \frac{1}{|x|} & \text{if } |x| > 1 \end{cases}.$$
Strichartz estimates for the wave equation

For $d \geq 2$ and $s \in \left[\frac{1}{2}, \frac{d}{2}\right)$,

$$\|e^{it\sqrt{-\Delta}} f\|_{L^p(\mathbb{R}^{d+1})} \leq C \|f\|_{\dot{H}^s(\mathbb{R}^d)}$$

for each $f \in \dot{H}^s(\mathbb{R}^d)$ and where

$$p = \frac{2(d+1)}{d - 2s}.$$
For $d \geq 2$ and $s \in \left[\frac{1}{2}, \frac{d}{2}\right)$,

$$\| e^{it\sqrt{-\Delta}} f \|_{L^p(\mathbb{R}^{d+1})} \leq C \| f \|_{\dot{H}^s(\mathbb{R}^d)}$$

for each $f \in \dot{H}^s(\mathbb{R}^d)$ and where

$$p = \frac{2(d + 1)}{d - 2s}.$$

The sharp constant and a full characterisation of extremisers is only known in some rather isolated cases.
It is known that, for all admissible \((d, s)\), an extremiser exists (Bulut, Fanelli–Vega–Viscigia, Ramos).
It is known that, for all admissible \((d, s)\), an extremiser exists (Bulut, Fanelli–Vega–Visciglia, Ramos).

Finding the exact shape of such extremisers appears to be a rather difficult problem;
It is known that, for all admissible \((d, s)\), an extremiser exists (Bulut, Fanelli–Vega–Visciglia, Ramos).

Finding the exact shape of such extremisers appears to be a rather difficult problem; known when \((d, s) = (2, \frac{1}{2}), (3, \frac{1}{2})\) (Foschi) and \((d, s) = (5, 1)\) (B-Rogers).
It is known that, for all admissible \((d, s)\), an extremiser exists (Bulut, Fanelli–Vega–Visciglia, Ramos).

Finding the exact shape of such extremisers appears to be a rather difficult problem; known when \((d, s) = (2, \frac{1}{2}), (3, \frac{1}{2})\) (Foschi) and \((d, s) = (5, 1)\) (B-Rogers).

In each of these cases, the initial datum \(f_{\star}\) such that

\[
\hat{f}_{\star}(\xi) = \frac{e^{-|\xi|}}{|\xi|}
\]

is extremal.
Theorem (B-Jeavons)

The one-sided wave propagator satisfies the estimate

\[\| e^{it\sqrt{-\Delta}} f \|_{L^4(\mathbb{R}^5)} \leq \left(\frac{4}{15\pi^2} \right)^{\frac{1}{4}} \| f \|_{\dot{H}^\frac{3}{4} (\mathbb{R}^4)} \]

where the constant is sharp and is attained if and only if

\[\hat{f}(\xi) = \frac{e^{a|\xi| + ib \cdot \xi + c}}{|\xi|}, \]

where \(a, c \in \mathbb{C} \) such that \(\text{Re}(a) < 0 \), and \(b \in \mathbb{R}^d \).
Theorem (B-Rogers)

Let $d \geq 3$. Then

$$\|e^{it\sqrt{-\Delta}}f\|_{L^4(\mathbb{R}^{d+1})}^4 \leq C(d) \int_{(\mathbb{R}^d)^2} |\hat{f}(y_1)|^2 |\hat{f}(y_2)|^2 |y_1|^\frac{d-1}{2} |y_2|^\frac{d-1}{2} (1 - y'_1 \cdot y'_2)^\frac{d-3}{2} dy_1 dy_2$$

holds with sharp constant

$$C(d) = 2^{-\frac{d-1}{2}} (2\pi)^{-3d+1} |\mathbb{S}^{d-1}|$$
Theorem (B-Rogers)

Let $d \geq 3$. Then

$$\|e^{it\sqrt{-\Delta}f}\|_{L^4(\mathbb{R}^{d+1})}^4 \leq C(d) \int_{(\mathbb{R}^d)^2} |\hat{f}(y_1)|^2 |\hat{f}(y_2)|^2 |y_1|^{\frac{d-1}{2}} |y_2|^{\frac{d-1}{2}} (1 - y_1' \cdot y_2')^{\frac{d-3}{2}} \, dy_1 dy_2$$

holds with sharp constant

$$C(d) = 2^{-\frac{d-1}{2}} (2\pi)^{-3d+1} |\mathbb{S}^{d-1}|$$

which is attained if and only if

$$\hat{f}(\xi) = \frac{e^{a|\xi|+b \cdot \xi+c}}{|\xi|},$$

where $a, c \in \mathbb{C}$, $b \in \mathbb{C}^d$ with $|\text{Re}(b)| < -\text{Re}(a)$.
Polar coordinates gives

\[\| e^{it\sqrt{-\Delta} f} \|_{L^4(\mathbb{R}^{d+1})}^4 \leq \frac{C(d)}{2^{d-3}} \int_{(S^{d-1})^2} g(\omega_1)g(\omega_2)|\omega_1 - \omega_2|^{d-3} d\omega_1 d\omega_2 \]

where

\[g(\omega) = \int_0^\infty |\hat{f}(r\omega)|^2 r^{\frac{3(d-1)}{2}} dr. \]
Polar coordinates gives

\[\|e^{it\sqrt{-\Delta}}f\|_{L^4(\mathbb{R}^{d+1})}^4 \leq \frac{C(d)}{2^{\frac{d-3}{2}}} \int_{(\mathbb{S}^{d-1})^2} g(\omega_1)g(\omega_2)|\omega_1 - \omega_2|^{d-3} d\omega_1 d\omega_2\]

where

\[g(\omega) = \int_0^\infty |\hat{f}(r\omega)|^2 r^{\frac{3(d-1)}{2}} dr.\]

Note that

\[\int_{\mathbb{S}^{d-1}} g = (2\pi)^d \|f\|_{H^{\frac{d-1}{4}}}^2.\]
Let
\[H_\rho(g) = \int_{(S^{d-1})^2} g(\omega_1)g(\omega_2)|\omega_1 - \omega_2|^{-\rho} \, d\omega_1 d\omega_2 \]
Let

\[H_\rho(g) = \int_{(S^{d-1})^2} g(\omega_1)\overline{g(\omega_2)}|\omega_1 - \omega_2|^{-\rho} \, d\omega_1 d\omega_2 \]

and \(\mu_g = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} g \).
Let
\[H_{\rho}(g) = \int_{(S^{d-1})^2} g(\omega_1)g(\omega_2)|\omega_1 - \omega_2|^{-\rho} \, d\omega_1 d\omega_2 \]
and \(\mu_g = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} g. \)

Theorem (B-Jeavons)

Let \(-2 < \rho < 0\), and let \(g \in L^1(S^{d-1}). \) Then
\[
H_{\rho}(g) \leq H_{\rho}(\mu_g 1) = 2^{d-2-\rho} B\left(\frac{d-1-\rho}{2}, \frac{d-1}{2}\right) \frac{|S^{d-2}|}{|S^{d-1}|} \left| \int_{S^{d-1}} g \right|^2
\]
and equality holds if and only if \(g \) is constant.
Expanding $g = \sum_{k \in \mathbb{N}_0} Y_k$, the Funk–Hecke theorem gives

$$H_\rho(g) = 2^{-\frac{\rho}{2}} \sum_{k \geq 0} I_k(d, \rho) \int_{S^{d-1}} |Y_k(\omega)|^2 \, d\omega$$

where

$$I_k(d, \rho) = |S^{d-2}| \int_{-1}^{1} (1 - t)^{-\frac{\rho}{2}} P_{k,d}(t)(1 - t^2)^{\frac{d-3}{2}} \, dt.$$

Lemma

If $-2 < \rho < 0$ then

$$I_0(d, \rho) = |S^{d-2}| 2^{d-2-\frac{\rho}{2}} B\left(\frac{d-1-\rho}{2}, \frac{d-1}{2}\right) > 0$$

and $I_k(d, \rho) < 0$ for all $k \geq 1$.
Hence

\[H_{\rho}(g) \leq 2^{-\frac{\rho}{2}} I_0(d, \rho) \int_{S^{d-1}} |Y_0|^2 \, d\omega = H_{\rho}(\mu_g 1). \]
Hence

\[H_\rho(g) \leq 2^{-\frac{\rho}{2}} I_0(d, \rho) \int_{S^{d-1}} |Y_0|^2 \, d\omega = H_\rho(\mu_g \mathbf{1}). \]

The lemma fails for \(\rho < -2 \) because \(I_2(d, \rho) > 0 \).
Hence

\[H_\rho(g) \leq 2^{-\frac{\rho}{2}} I_0(d, \rho) \int_{S^{d-1}} |Y_0|^2 \, d\omega = H_\rho(\mu_g \mathbf{1}). \]

The lemma fails for \(\rho < -2 \) because \(I_2(d, \rho) > 0 \).

Applying it with \((d, \rho) = (4, -1)\) gives

\[
\| e^{it\sqrt{-\Delta}} f \|_{L^4(\mathbb{R}^{4+1})}^4 \leq \frac{C(4)}{\sqrt{2}} \int_{(S^3)^2} g(\omega_1)g(\omega_2)|\omega_1 - \omega_2| \, d\omega_1 d\omega_2
\]

\[
\leq \frac{C(4)}{\sqrt{2}} H_{-1}(1)|\mu_g|^2
\]

\[
= \frac{4}{15\pi^2} \| f \|^4_{\dot{H}^1(\mathbb{R}^4)}.
\]
For higher dimensions, we want to use the case \((d, \rho) = (d, 3 - d)\). But \(3 - d < -2\) for \(d \geq 6\).
For higher dimensions, we want to use the case \((d, \rho) = (d, 3 - d)\). But \(3 - d < -2\) for \(d \geq 6\).

The case \((d, \rho) = (3, -1)\) was used by Foschi to prove that constant functions are extremisers in the Stein–Tomas inequality

\[
\| \hat{g}d\sigma \|_{L^4(\mathbb{R}^3)} \leq C \| g \|_{L^2(d\sigma)}.
\]
For higher dimensions, we want to use the case \((d, \rho) = (d, 3 - d)\). But \(3 - d < -2\) for \(d \geq 6\).

The case \((d, \rho) = (3, -1)\) was used by Foschi to prove that constant functions are extremisers in the Stein–Tomas inequality

\[
\|\hat{g} d\sigma\|_{L^4(\mathbb{R}^3)} \leq C\|g\|_{L^2(d\sigma)}.
\]

This was partially extended to higher dimensions by Carneiro–Oliveira e Silva, with a similar obstruction preventing a generalisation to all dimensions.
Thanks for listening....!